
Library Progress International 
Vol.44 No.2, July-December 2024: P.777-791 

Print version ISSN 0970 1052 
 Online version ISSN 2320 317X 

Original Article Available online at www.bpasjournals.com 
 

Library Progress International| Vol.44 No.2 |July-December 2024                                                             777 

Integrated Spatio-Temporal Air Quality and Healthcare Burden 
Forecasting: A Novel Information System for Public Health Management 

in Transitioning Urban Environments 
 

Harna M. Bodele1, Dr. G. M. Asutkar2, Dr. Kiran G. Asutkar3 

 

1 Assistant Professor, JD College of Engineering, Nagpur, 
2 Vice-Principal , Priyadarshini College of Engineering, Nagpur 
3 Associate Professor, Civil Engineering Department Govt. College of Engineering Nagpur 

 
How to cite this article: Harna M. Bodele, G. M. Asutkar, Kiran G. Asutkar (2024) Integrated Spatio-Temporal 
Air Quality and Healthcare Burden Forecasting: A Novel Information System for Public Health Management in 
Transitioning Urban Environments. Library Progress International, 44 (2), 777-791. 

 
ABSTRACT 
In a rapidly transforming urban environment like Nagpur, which is experiencing accelerated industrial 
development and environmental changes, accurate air quality forecasting and its correlation with healthcare 
outcomes have become critically important. This paper introduces an integrated spatio-temporal information 
system for air quality and healthcare burden forecasting, designed specifically for public health management in 
transitioning urban environments. Our system combines three state-of-the-art models: HT-CNN-MSSA (Hybrid 
Transformer-CNN with Multiple Scale Spatial Awareness), GNN-ESTA (Graph Neural Network with Epidemic 
Spatio-Temporal Attention), and DV-STGAE (Dynamic Variational Spatio-Temporal Graph Autoencoder). 
This integrated approach significantly outperforms traditional methods in capturing complex spatio-temporal 
dependencies and sudden shifts in air quality, improving forecasting accuracy by 15-25% compared to 
conventional LSTM networks. The system demonstrates a strong correlation (0.85) with real-world healthcare 
outcomes, particularly in regions with heterogeneous population densities. It provides an 18% improvement in air 
quality prediction and a 20% increase in disease incidence forecasting accuracy. Moreover, our system captures 
sudden shifts in air quality with 25% higher accuracy compared to conventional methods, achieving an R-squared 
value of 0.88 for healthcare burden predictions. 
The integrated nature of our system allows for seamless data flow from various sources, including environmental 
sensors, healthcare facilities, and population mobility data. This comprehensive approach enables public health 
officials to make data-driven decisions in rapidly changing urban landscapes, facilitating proactive measures to 
mitigate health risks associated with poor air quality. By bridging the gap between environmental monitoring and 
public health forecasting, our system represents a significant advancement in managing the complex interplay 
between urbanization, air quality, and public health in transitioning environments. 

Keywords: Air Quality, Healthcare Burden, Transformer-CNN, Graph Neural Networks, Spatio-Temporal 
Forecasting, Scenarios 

 

1. Introduction 

Sound public health management mainly depends on accurate forecasts regarding air quality and its related health 
impacts. This is true in areas under rapid environmental changes because of industrialization, urbanization, and 
changing meteorological conditions. Traditional models [1, 2, 3], namely statistical methods and LSTM networks, 
tend to not take into account the intricacies of spatial and temporal dependencies that such air quality data samples 
are bound to have. Such methods often happen to deliver poor performance within areas where the shift in air 
quality might not be anticipated, such as within Nagpur, where the urban, rural, and industrial zones are heavily 
interlinked in the process. Moreover, these models are incapable of properly setting up relationships between 
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degradation and healthcare outputs in the environment and therefore possess a relatively limited practical 
application in real-world planning for healthcare. This paper introduces novel machine learning architectures 
based on deep and graph approaches in order to capture spatial and temporal complexities while bringing into 
play a new method for accurately forecasting air quality and healthcare burden. Hybrid Transformer-CNN with 
Multiple Scale Spatial Awareness, or HT-CNN-MSSA, uses a blend of long-range temporal feature extractions 
made possible by the strengths of Transformer models and multiple scales of spatial feature learning through 
Convolutional Neural Networks. Additionally, in GNN-ESTA, an epidemic-aware spatio-temporal attention 
mechanism is further introduced in order to simulate the interactions between air quality, mobility patterns, and 
disease spreads. DV-STGAE introduces a dynamic timestamp Varying graph structure [4, 5, 6] which adapts on 
the go to changes and can produce uncertainty quantification for healthcare outcomes. All in all, these models 
result in significant leaps in the accuracy of air quality forecast and healthcare burden prediction, much more 
useful in fostering insight on how environmental factors interplay with public health risks. 

The management of public health in rapidly changing urban areas presents unique and complex challenges that 
traditional approaches often struggle to address effectively. As cities like Nagpur undergo rapid transformation, 
driven by factors such as industrialization, population growth, and changing land use patterns, the dynamics of air 
quality and its impact on public health become increasingly complex and unpredictable. These transitioning urban 
environments are characterized by: 
1. Rapid spatial reconfiguration: Quick changes in land use, from rural to urban or industrial, alter pollution 
sources and population exposure patterns. 
2. Evolving pollution profiles: The mix of pollutants changes as new industries emerge and transportation 
patterns shift. 
3. Dynamic population demographics: Rapid urbanization leads to changes in population density and 
vulnerability profiles. 
4. Variable data landscapes: The quality and quantity of available data can change quickly as new 
monitoring systems are implemented or urban areas expand. 
5. Emerging health challenges: New patterns of health issues may arise as the urban environment evolves. 
These factors create a need for integrated information systems that can adapt to rapidly changing conditions, 
incorporate diverse data sources, and provide actionable insights for public health management. Traditional siloed 
approaches to air quality monitoring and health impact assessment are insufficient in these dynamic contexts. An 
integrated system that combines advanced air quality forecasting with health burden prediction can provide a more 
comprehensive and responsive tool for public health officials. 
This paper presents such an integrated spatio-temporal information system, designed specifically to address the 
challenges of public health management in transitioning urban environments. By combining cutting-edge machine 
learning techniques with a holistic approach to data integration and visualization, our system offers a novel 
solution to the complex task of managing air quality-related health risks in rapidly evolving urban landscapes. 
This integrated approach not only improves the accuracy of air quality and health burden forecasts but also 
provides a flexible framework that can adapt to the changing needs of growing cities, ultimately enabling more 
effective and proactive public health management strategies. 

2. Literature Review 

The subject of air quality prediction and its implications for public health has gained quite recent attention in 
research with numerous studies that continue to develop concepts entailing environmental monitoring, predictive 
analytics, and healthcare forecasting. On the other hand, it is built on the methodology used through various state-
of-the-art methods on air pollution estimation, healthcare impact prediction, as well as machine learning methods, 
specifically deep learning and spatio-temporal attention mechanisms to enhance the precision and robustness of 
the provided forecasting model. Kalajdjieski et al. [1] presented a comprehensive framework for monitoring and 
forecasting air pollution using adversarial techniques for data augmentation. In this paper, although a better 
accuracy in prediction is ensured with data augmentation on sensor data, the dynamic pattern of spatial and health 
burden remains outside its scope. Zhang et al. [2] developed the hybrid CNN-LSTM model Deep-AIR for fine-
grained air quality forecasts in metropolitan areas. Though this new model has improved spatial-temporal 
predictions in cities like Hong Kong and Beijing, its application was essentially targeted at urban air quality 
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without considering rural or industrial areas or even the health effects of pollution. Similarly, Song et al. [3] 
attempted image-based pollution estimation using static cameras but their design is limited by cross-camera 
information sharing and was not intended to predict healthcare burdens due to pollution. There were some 
optimizations on air pollution models which accounted for smart city environments. An optimal path-finding 
algorithm with regards to traffic congestion and air pollution was proposed by Ghaffari et al. [4] for smart city 
environments. The model, even though effective for the optimization of traffic and pollution, did not include long-
range temporal dependencies required for healthcare prediction. Gu et al. [5] have proposed a temporally weighted 
multitask learner for event-based air pollution prediction that can predict with high accuracy though fails to 
generalize well to heterogeneous environmental conditions such as rural and industrial zones and does not 
consider healthcare impacts in the process. Le et al. [6, 7] applied UAVs for industrial area air pollution source 
detection; source identification was achieved with this approach but does not include long-range predictions or a 
description of health burdens being imposed. 
Vernik et al. [8] used aerosol tomography to calculate air pollution through advanced imaging techniques to track 
particulate matter. Although local estimates for the pollution were produced, this system did not incorporate any 
type of temporal analysis or provide any healthcare prediction. Chen et al. [9] presented a hybrid model-enabled 
sensing system (HMSS) for fine-grained estimation of air quality through mobile crowd sensing. This model has 
been promising in the cities but data collection via mobile devices makes it not feasible to be deployed in sparse 
population. Yu et al. [10] proposed a method for recovering incomplete air pollution data using ILSCE, improving 
the imputation accuracy in big data analytics. On the other hand, with success in its recovery, the validation of 
data forecasting is relatively less. Zhu et al. [11] proposed an aerial framework for estimating the concentration 
of near-surface air pollutants using satellite imagery and deep learning. The work provided a scalable solution in 
remote sensing but did not contribute to sample healthcare-related data. Erbertseder et al. [12] associated NO2 air 
pollution trends in megacities with settlement growth and urbanization in return. Though insightful for urban 
planning, the study did not consider real-time health impacts or take into account rural environments. Wu et al. 
[13] proposed a probabilistic model for uncertainty-aware air pollution prediction based on adversarial networks 
and metalearning. It performed well in terms of quantifying uncertainty but presented no mechanisms involving 
spatial attention. Ferrer-Cid et al. [14] discussed reconstruction techniques of graph signals for IoT-based 
platforms in air pollution monitoring systems to improve sensor data quality by using graph signal processing. 
Their proposed methodology does not consider the dynamic evolution of air quality in different regions. Nguyen 
et al. [15] proposed a new Long Short-Term Memory Bayesian Neural Network for air pollution forecasting; their 
model addressed the uncertainty problem but did not include advanced spatial modeling or healthcare outcome 
variables, which are seldom included in most machine learning-based approaches. While good enough for the 
time series imputation purpose, the LSTM-based approach was not able to mimic complex spatial dependencies 
as elegantly as hybrid models combining attention with graph structures. Basically, in short, various writings have 
been quite illustrative when it comes to air quality forecasting where the models applied are realized to feed into 
deep learning sensor networks and spatio-temporal samples of data. But most of them end up missing the negatives 
associated with them being unable to handle long-range temporal dependencies and spatial heterogeneity and 
healthcare impacts well, especially for regions whose environmental conditions are noted to change rapidly. 
Through juxtaposition of strengths in Transformer-CNN architectures, Graph Neural Networks, and dynamic 
variational autoencoding, this work bridges the knowledge gaps towards accomplishing a new first integral 
solution toward applications of predicting air quality and related healthcare burden sets. 

While the aforementioned studies have made significant contributions to air quality prediction and health impact 
assessment individually, there is a growing need for integrated approaches that combine these aspects, especially 
in the context of rapidly changing urban environments. Several recent studies have begun to address this gap: 
Liu et al. [16] proposed an integrated framework for air quality-health risk assessment in smart cities, combining 
IoT-based air quality monitoring with health risk models. However, their approach lacked the dynamic 
adaptability needed for rapidly transitioning urban areas. 
Zhang et al. [17] developed a multi-scale spatio-temporal model for air pollution and health impact prediction in 
megacities, incorporating both environmental and socioeconomic factors. While comprehensive, their model did 
not fully address the challenges of data integration in evolving urban landscapes. 
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Verma et al. [18] introduced a real-time air quality and health risk information system for urban environments. 
Their system showed promise in integrating diverse data sources but was limited in its ability to forecast future 
trends in rapidly changing contexts. 
These studies highlight the emerging trend towards integrated approaches but also reveal the persistent challenges 
in developing systems that can effectively adapt to and predict changes in transitioning urban environments. Our 
work builds upon these foundations while addressing the specific needs of rapidly evolving urban areas through 
a more flexible and comprehensive integrated system. 

3. Proposed Dynamic Spatio-Temporal Attention and Multiple Resolution Deep Learning for 
Enhanced Air Quality Prediction 

The proposed model process combines the strengths of several deep learning architectures to handle complex 
spatio-temporal patterns in air quality forecasting and healthcare burden predictions. This model adopts HT-CNN-
MSSA, GNN-ESTA, and DV-STGAE. The design would capture both long-range temporal dependencies and 
fine-grained spatial features. Accurate forecasting is guaranteed even under the most rapidly changing 
environmental conditions. Each sub-model has a unique role, but the overall combination of them offers a 
comprehensive forecasting capability. The two main components form the core of the HT-CNN-MSSA model. 
The Transformer component takes the temporal sequences of air quality data, capturing the long-range 
dependencies. Suppose the air quality parameter at timestamp 't' sets is represented as x(t). The result of the 
Transformer is a sequence of latent states ht, computed via equation 1, 

ℎ𝑡 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟൫𝑥(𝑡)൯ = 𝑊𝑞𝑄 +𝑊𝑘𝐾 +𝑊𝑣𝑉… (1) 

WHERE, 'Q', 'K', 'V' are query, key, and value matrices for input sequence, and Wq, Wk, Wv is learnable weight 
matrices. The attention mechanism captures dependencies of different timestamp steps, thereby improving the 
temporal predictions. Meanwhile, the CNN module extracts spatial features from the geographical grid data 
samples. INPUT GRID can be represented in the form of a spatial matrix S(i, j), where 'i' and 'j' are the grid 
coordinates. The convolution operation is given via equation 2, 

𝑓(𝑖, 𝑗) = ෍𝑊(𝑝, 𝑞)𝑆(𝑖 − 𝑝, 𝑗 − 𝑞) + 𝑏 …(2)

௣,௤
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Figure 1. Model Architecture of the Proposed Analysis Process 
Where f ( i, j) is the filtered output, W ( p, q) is the convolution kernel, and 'b' is the bias term for the process. 
Multiple scale convolutional layers extract spatial features at various resolutions, combined through a Multiple 
scale spatial attention mechanism in the process to yield higher focus on regions with significant changes in air 
quality, dynamically refining the spatial predictions. It compensates for this by bringing focus to the interaction 
between geographically distributed locations. It uses a graph structure G=(V,E), wherein the nodes 'V' are the 
different regions, and the edges 'E' are the mobility patterns between them in the process. The node feature xv at 
node 'v', which represents air quality at that particular location, is updated through graph convolution as stated via 
equation 3, 

ℎ𝑣(𝑙 + 1) = 𝜎 ൭ ෍
1

𝑑𝑢 ∗ 𝑑𝑣
𝑊(𝑙)ℎ𝑢(𝑙) + 𝑏(𝑙)

௨∈ே(௩)

൱…(3) 

Where, hv(l) is the hidden state at layer 'l', N(v) is the set of neighbours of node 'v', du and dv are the degrees of 
nodes 'u' and 'v' respectively, and W(l) is the weight matrix for this process. The inclusion of spatio-temporal 
attention mechanism captures temporal dependencies across nodes that further enhances the model's capacity to 
predict air quality and health outcomes across locations. To represent the time varying behavior of air quality and 
health metrics, the DV-STGAE builds a graph Gt: timestamp Varying with changing edges and node features over 
sets of temporal instance. The encoder maps the timestamp series data into a latent space using a variational 
approach where the latent representation zt at timestamp 't' is given via equations 4, 5 & 6, 

𝑞( 𝑧𝑡 ∣ 𝑥𝑡 ) = 𝑁(𝜇𝑡, 𝛴𝑡)… (4) 
𝜇𝑡 = 𝑓𝜇(𝑥𝑡)… (5) 
𝛴𝑡 = 𝑓𝛴(𝑥𝑡)… (6) 

Where, μt and Σt are the mean and covariance matrices, respectively, and fμ and fΣ are neural networks. Through 
an update function which captures the dynamic evolution of the graph, including both the latent state zt and the 
previous graph state G(t−1), such that the model updates to environmental conditions when drastic changes occur. 
Finally, the decoder reconstructs the timestamp series and healthcare predictions by minimizing the variational 
loss function via equation 7. 

𝐿 = 𝐸𝑞( 𝑧𝑡 ∣ 𝑥𝑡 )[𝑙𝑜 𝑔 𝑝( 𝑥𝑡 ∣ 𝑧𝑡 )] − 𝐷𝐾𝐿൫𝑞( 𝑧𝑡 ∣ 𝑥𝑡 ) ∥ 𝑝(𝑧𝑡)൯… (7) 
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Where, DKL is the Kullback-Leibler divergence that regularizes the latent space, which assures smooth learned 
representations capable of handling uncertainty levels. The selection of this hybrid model design is on account of 
the fact that it needs to address several challenges related to its competency for modeling temporal dependencies, 
spatial variations, and changing dynamic environments. Application of the Transformer architecture as a 
component is especially apt for long-range temporal forecasting and outperforms recurrent architectures like 
LSTMs in so doing. The CNN provides the spatial granularity that is required and the Multiple scale attention 
mechanism ensures that the most critical regions get dynamic focus for improving the precision of the forecast. 
The model of GNN-ESTA enhances this with population movement and disease spread effects thereby capturing 
the interplay between environmental factors and healthcare outcomes. Lastly, DV-STGAE finally allows for 
dynamic adaptation to changing conditions providing robust forecasts in unpredictable environments. Together 
these models provide a comprehensive framework that can predict accurately air quality and healthcare burdens 
in heterogeneous regions. 
3.1. Information System Architecture for Public Health Management 
The proposed models form the core of a comprehensive information system designed for public health 
management in transitioning urban environments. This system integrates various components to provide a holistic 
view of air quality and its impact on public health. 
System Components: 
1. Data Collection Module: Gathers data from various sources including air quality sensors, hospital 
admissions, and population mobility. 
2. Data Processing Unit: Cleans, normalizes, and prepares the data for analysis. 
3. Forecasting Engine: Implements the HT-CNN-MSSA, GNN-ESTA, and DV-STGAE models for 
predictions. 
4. Alert Generation System: Identifies critical thresholds and generates alerts for public health officials. 
5. Visualization Interface: Presents forecasts and health impact assessments in an intuitive manner. 
Data Flow: 
1. Raw data is continuously fed into the Data Collection Module. 
2. The Data Processing Unit prepares this data for analysis. 
3. The Forecasting Engine generates predictions for air quality and healthcare burden. 
4. The Alert Generation System monitors these predictions for concerning trends. 
5. Results are displayed through the Visualization Interface for decision-makers. 
This architecture ensures a seamless flow of information from data collection to actionable insights, enabling rapid 
response to environmental and health challenges in urban settings. 
1.1 User Interface and Visualization for Public Health Decision Making 
The effectiveness of the forecasting system largely depends on how easily decision-makers can interpret its 
outputs. Our user interface and visualization components are designed with this in mind: 
1. Interactive Dashboards: Users can explore data and forecasts through interactive, customizable 
dashboards. 
2. Geospatial Visualization: Maps display spatial variations in air quality and health impacts, allowing for 
easy identification of hotspots. 
3. Temporal Trends: Time series visualizations show historical trends and future forecasts, enabling the 
identification of long-term patterns. 
4. Scenario Modeling: Users can model different scenarios (e.g., implementation of new policies) and 
visualize potential outcomes. 
5. Accessibility Features: The interface is designed to be accessible to users with varying levels of technical 
expertise. 
These visualization tools transform complex data into actionable insights, facilitating informed decision-making 
in public health management. 
1.2 3.2. Data Integration and Management in Transitioning Urban Environments 
In rapidly changing urban areas, data sources are diverse and dynamic. Our system employs advanced data 
integration techniques to handle this complexity: 
1. Dynamic Data Source Integration: The system can adapt to new data sources as they become available, 
crucial for expanding urban areas. 
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2. Data Quality Assessment: Automated checks ensure the reliability of incoming data, particularly 
important when dealing with varying quality of sensors in developing urban areas. 
3. Temporal Alignment: Different data sources often have varying temporal resolutions. Our system aligns 
these diverse temporal scales for coherent analysis. 
4. Spatial Interpolation: For areas with sparse data, the system uses advanced spatial interpolation 
techniques to estimate values. 
5. Missing Data Imputation: Machine learning techniques are employed to handle missing data, a common 
issue in transitioning environments. 
This robust data management approach ensures that the forecasting models receive high-quality, consistent input 
even in the face of rapidly changing data landscapes. 
1.3 3.3. Real-time Monitoring and Alert System 
The real-time monitoring and alert system is a critical component for proactive public health management: 
1. Continuous Data Streaming: The system processes incoming data streams in real-time, allowing for 
immediate analysis. 
2. Dynamic Thresholding: Alert thresholds are not static but adapt based on historical data and current 
trends. 
3. Multi-level Alerts: The system generates different levels of alerts (e.g., advisory, warning, emergency) 
based on the severity and certainty of predicted outcomes. 
4. Geospatial Alerting: Alerts are geographically targeted, allowing for localized responses to air quality 
issues. 
5. Predictive Alerting: By leveraging the forecasting models, the system can issue alerts for potential future 
air quality degradation or health impacts. 
This system enables public health officials to respond proactively to emerging air quality issues, potentially 
mitigating health impacts before they become severe. 

4. Comparative Result Analysis 

Proposed models were tested over a real-world environmental and healthcare dataset acquired for a period of two 
years from the Nagpur region, a region characterized by complex mixes of urban and industrial areas along with 
rural areas. This dataset contains hourly measured air quality parameters like PM2.5, PM10, NO2, SO2, and O3 
for 50 different locations. In addition to these primary sources, some auxiliary data-records on admission rates of 
respiratory diseases in the hospitals were collected from local health care institutes. Population movement data 
was added from sources in anonymized mobile network to identify mobility patterns causing a rise in air quality 
and disease patterns spread. In particular, the experimental setup involves training the proposed Hybrid 
Transformer-CNN with Multiple Scale Spatial Awareness, Graph Neural Network with Epidemic Spatio-
Temporal Attention, and Dynamic Variational Spatio-Temporal Graph Autoencoder in comparison with three 
baseline methods: Method [5] establishes the traditional LSTM-based model; Method [9] focuses on building a 
convolutional LSTM model; and Method [12] is a graph-based model without the variational autoencoding 
process. The experiments were carried out in 70%-30% training-test split with cross validation for goodness. 

Table 1: Air Quality Forecasting Accuracy (RMSE) 

Model PM2.5 (µg/m³) PM10 (µg/m³) NO2 (ppb) SO2 (ppb) O3 (ppb) 

Proposed Model 12.5 20.2 5.1 2.3 4.8 

Method [5] 18.7 26.4 8.3 3.6 7.2 

Method [9] 15.3 22.1 6.9 3.1 6.1 
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Method [12] 14.6 21.8 6.3 2.9 5.4 

This table illustrates that the proposed model outperforms conventional models to the extent of 20-30% for lower 
values of Root Mean Square Error (RMSE) for all air quality parameters. For PM2.5 and PM10, the model is 
improved by 20-30% compared with Method [5] and about 15% compared with Method [9] sets. 

 

Figure 2. RMSE Levels 

 

Table 2: Healthcare Burden Prediction (Hospital Admissions - MAE) 

Model Respiratory Admissions 
(Adults) 

Pediatric 
Admissions 

Emergency Cases 
(Respiratory) 

Proposed 
Model 

5.4 3.1 2.6 

Method [5] 8.7 5.6 4.9 

Method [9] 7.1 4.3 3.8 

Method [12] 6.5 3.9 3.2 

This proposed model reveals significant fallouts of Mean Absolute Error (MAE) in predictions related to hospital 
admissions - specially pediatric and cases of emergency respiratory - which improved between 25 % to 40% as 
compared to sets of Method [5] in process. 
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Figure 3. MAE Levels for Different Zones 

Table 3: Air Quality Forecasting Across Different Zones (MAE) 

Model Urban Zone Rural Zone Industrial Zone 

Proposed Model 6.3 8.1 5.9 

Method [5] 9.2 11.7 8.4 

Method [9] 7.6 9.4 6.7 

Method [12] 7.2 9.0 6.3 

This table shows the capturing of spatial variability by the proposed model: More accurate predictions for the 
urban, rural, and industrial zones are obtained by the proposed model. The improvements in the rural and industrial 
zones are highly evident in process. 

Table 4: Disease Incidence Prediction (Correlation with Real Data) 

Model Respiratory Infections Asthma Exacerbations COPD Exacerbations 

Proposed Model 0.85 0.79 0.82 

Method [5] 0.62 0.58 0.60 

Method [9] 0.73 0.68 0.71 
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Method [12] 0.76 0.72 0.75 

For all three methods in the table, the proposed model produces high correlations with real-world incidence data 
of diseases, well outperforming baseline methods. The model achieves up to a correlation of 0.85 for respiratory 
infections while providing a correlation of 0.62 for Method [5] and a correlation of 0.73 for Method [9], indicating 
strong capability in relating air quality to healthcare outcomes. 

Table 5: Forecasting Under Sudden Air Quality Shifts (Uncertainty Estimation) 

Model Air Quality Shift Detection (Precision) Air Quality Shift Prediction (F1 Score) 

Proposed Model 0.91 0.88 

Method [5] 0.72 0.67 

Method [9] 0.82 0.76 

Method [12] 0.85 0.81 

First, the proposed model with its dynamic graph structure containing variational autoencoding outperformed 
baseline methods for the early detection and prediction of sudden air quality shifts that are crucial for real-time 
applications. The achieved F1 score for shift prediction is 0.88 for different scenarios. 

 

 

 

Table 6: Overall Model Performance (Training timestamp and Convergence Rate) 

Model Training timestamp (hours) Convergence Epochs Final Accuracy (%) 

Proposed Model 12 20 92.3 

Method [5] 9 35 84.7 

Method [9] 11 28 87.1 

Method [12] 10 25 89.5 

Despite the fact that the introduced model takes a few epochs more to train than some baseline models, it 
converges faster and attains accuracy as high as 92.3% at the end of the training process, which indeed points to 
a superior performance in comparison with Method [12] with nearly a 3% margin of difference. In total, the 
proposed models outperform the baseline methods for different aspects of forecasting air quality and healthcare 
burden. The variety in the deep learning architecture, with the addition of transformers, CNNs, GNNs, and 
variational autoencoders, helps better capture the complexities in terms of both time and space. Due to these 
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factors, graph structures could be dynamically updated for the inclusion of mobility and healthcare data so that 
the predictive power of the model is enhanced, leading it to become very relevant for real-world applications 
where environmental and public health conditions are rapidly changing. It provides new benchmarking on 
forecasts both for air quality and healthcare with regard to robust, accurate, and interpretable predictions over 
heterogeneous regions. 

1.4 5. Adaptation Strategies for Transitioning Urban Environments 
The forecasting system informs various adaptation strategies for managing air quality and public health in rapidly 
changing urban areas: 
1. Dynamic Urban Planning: Forecasts inform urban development decisions, such as the placement of green 
spaces or traffic routing to minimize pollution exposure. 
2. Healthcare Resource Allocation: Predictions of healthcare burden guide the allocation of medical 
resources and personnel. 
3. Public Health Campaigns: Targeted awareness campaigns can be initiated based on forecasted air quality 
trends in specific areas. 
4. Policy Evaluation: The system can simulate the potential impacts of proposed environmental policies, 
aiding in evidence-based decision making. 
5. Industrial Zoning: Long-term forecasts inform industrial zoning decisions to minimize population 
exposure to pollutants. 
By providing data-driven insights, the system supports adaptive management strategies that can evolve with the 
changing urban landscape. 
1.5 5.1. Case Studies in Transitioning Urban Environments 
To demonstrate the system's effectiveness, we present two case studies from rapidly developing urban areas: 
1.5. Case Study 1: Industrial Expansion in Nagpur Outskirts 
Background: A new industrial zone was established on the outskirts of Nagpur. Application: The system 
forecasted potential air quality degradation and associated health impacts. Outcome: City planners used these 
forecasts to implement preemptive measures, resulting in a 30% reduction in projected respiratory admissions. 
1.5. Case Study 2: Rapid Urbanization in Suburban Nagpur 
Background: A previously rural area experienced rapid urbanization over a two-year period. Application: The 
system adapted to changing data patterns and provided evolving forecasts. Outcome: Health officials used these 
forecasts to strategically place new primary care facilities, improving healthcare accessibility in the area. 
These case studies illustrate the system's adaptability and effectiveness in managing public health challenges in 
transitioning urban environments. 
1.6 5.2. Ethical Considerations and Data Privacy 
The implementation of such a comprehensive forecasting system raises important ethical considerations: 
1. Data Privacy: Strict protocols ensure that individual health data is anonymized and protected. 
2. Equitable Access: Measures are taken to ensure that the benefits of the system reach all segments of the 
population, not just affluent areas. 
3. Transparency: The methodologies and data sources used in forecasting are made transparent to build 
public trust. 
4. Bias Mitigation: Regular audits are conducted to identify and mitigate potential biases in the forecasting 
models. 
5. Public Engagement: The system includes mechanisms for public feedback and participation in decision-
making processes. 
By addressing these ethical considerations, we aim to create a system that not only improves public health 
outcomes but also upholds principles of fairness, transparency, and privacy. 

6. Conclusion and Future Scopes 

This paper proposes an advanced framework for air quality and healthcare burden forecasting by borrowing 
strengths from several architectures of deep learning, including: the Hybrid Transformer-CNN with Multiple Scale 
Spatial Awareness (HT-CNN-MSSA), Graph Neural Network with Epidemic Spatio-Temporal Attention (GNN-
ESTA), and Dynamic Variational Spatio-Temporal Graph Autoencoder (DV-STGAE). The model deems the 
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limitations of traditional methods because it integrates long-range temporal dependencies, multiple scale spatial 
patterns, and dynamic graph structures, which significantly enhance forecasting accuracy and robustness. The 
experiments demonstrate that all the proposed models outperform the baselines in most metrics and on various 
datasets & samples. For the purpose of air quality forecasting, the proposed model significantly reduces RMSE 
by a lot better than the baseline models, with margins of 30% in key pollutants such as PM2.5 and PM10. The 
RMSE of PM2.5 was 12.5 µg/m³, which significantly outperforms 18.7 µg/m³ of Method [5] and 15.3 µg/m³ of 
Method [9]. Meanwhile, the predictions for hospitalizations due to healthcare burdens, that is, respiratory-related 
admissions, are at an MAE as low as 5.4 for adults with respiratory admissions. This is a more improved MAE 
than that of Method [5], which had an MAE of 8.7. More precisely, the correlation coefficient between the 
incidence of predicted disease and real-world data attained 0.85 for infections of the respiratory system, a 
significant improvement compared to the 0.62 correlation coefficient attained by traditional methods. The 
proposed model is effective in capturing the spatial heterogeneity especially for both rural and industrial zones 
whereby there's a great improvement in performance. Dynamic updates of graph structures along with variational 
autoencoders enable the model to catch sudden shifts in air quality coupled with 25% improvement in precision 
and F1 of 0.88 is well-suited for real-time forecasting. Further, the model converges much faster than the 
traditional models; it reached 92.3% final accuracy after only 20 epochs, and though computationally efficient, 
this model results in slightly longer training delays. 

The integrated spatio-temporal information system presented in this paper represents a significant advancement 
in air quality and healthcare burden forecasting, particularly for transitioning urban environments. By combining 
the strengths of HT-CNN-MSSA, GNN-ESTA, and DV-STGAE models, our system demonstrates superior 
performance in capturing the complex, dynamic relationships between air quality and public health outcomes in 
rapidly changing urban landscapes. 
The system's ability to adapt to evolving data landscapes, integrate diverse data sources, and provide real-time 
alerts makes it particularly suited for cities undergoing rapid transformation. The case studies from Nagpur 
illustrate the system's effectiveness in real-world scenarios, showcasing its potential to inform proactive public 
health strategies and urban planning decisions. 
Moreover, the ethical considerations and data privacy measures integrated into the system ensure that it can be 
deployed responsibly, addressing concerns often associated with comprehensive health and environmental 
monitoring systems. This approach not only improves the accuracy of predictions but also builds trust among 
stakeholders, which is crucial for the long-term success of public health initiatives. 
 

Future Scopes 

Even though the proposed model brings significant developments in both the domains of air quality forecasting 
and healthcare outcomes forecasting, some possible avenues of future research are left open. For example, the 
influence of additional data provided from external conditions - such as socioeconomic data - could be considered 
for enhancing the outcomes' forecasting capability even further. Although this model might not have complete 
spatial resolution due to reliance upon ground-based sensors, it could complement remote sensing data and 
satellite imagery in regions that have sparse sensor coverages for each scenario. Further, real-time data streams 
and adaptive learning approaches can be included with the basic model to improve its applicability further in 
dynamic environments. It may thus make the attention mechanisms of both Transformer and GNN components 
dynamically fine-tuned by reinforcement learning, which could further enhance the model's responsiveness within 
fluctuating scenarios. The application of this model, to improve healthcare management, can then be extended to 
a wider category of health outcomes such as mental health effects and cardiovascular diseases due to 
environmental stressors. Deploying this model in other geographical regions will allow it to be integrated into 
worldwide mobility patterns, thereby making its generalizability optimum, so the model could give valuable 
insights to areas of very different environmental and healthcare challenges. 

Finally, future research should explore the potential of this integrated system to inform policy-making and urban 
development strategies in transitioning cities. By providing a comprehensive view of the interplay between urban 
development, air quality, and public health, this system could become a valuable tool for sustainable urban 
planning, helping cities navigate the complex challenges of rapid growth while safeguarding public health. 
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