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ABSTRACT 

The deadliest kind of skin cancer is malignant melanoma. To help doctors make more precise diagnoses of 

skin malignancies, dermoscopy uses noninvasive high-resolution imaging. Melanoma is a malignant skin 

cancer that grows rapidly and aggressively. Malignant melanoma continues to rank among the world's most 

rapidly expanding malignancies because of this trait. After spreading to other organs or tissues, the likelihood 

of a positive response to therapy drops to 5%, and the likelihood of survival after 10 years drops to around 

10%. There is currently no therapeutic option that involves surgical removal after it has metastasized. 

Therefore, it is of the utmost importance to diagnose malignant melanoma early. The false negative ratio for 

melanoma is the highest of all skin malignancies. One of the most popular and effective approaches to medical 

picture processing right now is Deep Neural Networks (DNN). While Deep Learning has shown promising 

results, there are still obstacles to overcome when applying it to these kinds of problems. These include issues 

like data volatility, noise sensitivity, and insufficiently large training datasets. With an emphasis on medical 

(clinical) image difficulties, this study offers strategies to help deep-learning models handle these concerns, 

specifically when it comes to skin cancer diagnosis. This research delves into the topic of melanoma 

classification using transfer learning and compares several state-of-the-art Convolutional Neural Network 

(CNN) designs. Many convolutional neural network (CNN) models have been pre-trained on the extensive 

ImageNet dataset; these models are among those that have been considered for this analysis. Dermoscopy 

pictures of the skin taken from the publicly available dataset are used to refine and test these models. To 

increase the dataset size, images are enhanced. The results show that various CNN architectures have varied 

strengths and weaknesses when it comes to this categorization job. The VGG16 model outperformed all others 

with a test accuracy of 85.76 percent and a train accuracy of 90.1 percent. This research sheds light on how to 

use dermoscopy pictures for effective deep-learning skin cancer screening and detection. There are more 

chances to adjust the model's hyperparameters and increase the variety and amount of the training data. 
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1. Introduction 

The Cancer is among the top killers in the world. 

Cancer is projected to surpass all other causes of 

mortality by 2030, accounting for 13.1 million 
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deaths, according to data compiled by the World 

Health Organization[1]. Skin cancer ranks first 

among all cancers in the United States. Estimates 

show that 20% of the US population will be 

affected by skin cancer at some point in their lives. 

Not all cases of skin cancer are lethal[2]. However, 

saving lives is greatly aided by early detection. It is 

necessary to study human skin and various skin 

cancers to comprehend skin cancer early detection 

and diagnosis. Skin cancer may be either basal cell 

carcinoma (BCC), squamous cell carcinoma (SCC), 

or melanoma (MEL). Despite its rarity, melanoma 

is the deadliest form of cancer due to its high 

metastasis rate[3]. 

 

1.1 Convolutional Neural Networks (CNN) 

One subset of Artificial Neural Networks 

developed specifically for use with grid-like data is 

the Convolutional Neural Network or CNN[4]. 

Natural Language Processing (NLP), autonomous 

video categorization, speech recognition, and self-

driving cars are just a few of the numerous real-

world challenges that have found effective 

applications of CNN architectures. When it comes 

to learning visual characteristics from images, this 

deep-learning approach is currently the most 

effective. CNNs are networks that use the 

convolution operator in one of their layers rather 

than standard matrix multiplication, as the name 

implies. A key distinction between this network 

and more conventional Multi-Layer 

Perceptron(MLP) is its emphasis on heavy-weight 

sharing as a means of lowering computational 

complexity. 

Research into the visual cortex, the area of the brain 

that processes visual information, served as an 

early model for the convolutional neural network. 

Here, several brain regions work together to 

analyse visual data in a hierarchical fashion; each 

region is responsible for a unique task. The visual 

cortex is home to neurons with a narrow local 

receptive field, meaning they can only process 

visual information from a very specific area of the 

visual spectrum. Neurons can share the whole 

vision field in their receptive fields. 

 

1.1.1 CNN layers 

The three main layers of a typical CNN are the 

convolutional, pooling, and fully-connected ones: 

Convolutional layer 

The network's convolutional layer is its most 

crucial component. A mathematical operation 

called the convolution operator takes two 

functions, g, and h, and returns a third function, 

which may be seen as the way h changes g. This is 

the basis of the system: 

(𝑔⨂ℎ) = ∫ 𝑔(𝜏)(𝑡 − 𝜏)𝑑𝜏
∞

−∞
                 (1) 

where the integral is defined for two continuous 

functions, g and h. Looking at the discrete case: 

(𝑔⨂ℎ)[𝑛] = ∑ 𝑔[𝑚]ℎ[𝑛 − 𝑚]∞
𝑚=−∞       (2) 

The input, or function g in the jargon of 

convolutional networks, is a multidimensional 

array of data, such an image. The h-function is a 

filter or kernel, which are array of learnable 

parameters with several dimensions. Finally, 

feature maps are another kind of multidimensional 

array of data that is produced by convolution. 

Tensors are a common term for these arrays with 

several dimensions. Suppose we have a 2D input 

matrix I and a 2D kernel K. To apply Equation (2) 

to a limited number of array items, we assume that 

all undefined points in these matrices are zero. 

𝐹𝑚𝑎𝑝 = (𝐼 ⊗ 𝐾)[𝑖, 𝑗] = ∑ ∑ 𝐼[𝑛1, 𝑛2]𝐾[𝑖 − 𝑛1, 𝑗 −𝑛2𝑛1

𝑛2]  (3) 

 

The following is the formula for calculating the 

spatial size of a convolutional layer's feature maps: 

𝑠𝑓𝑚 =
𝑠𝑖𝑚𝑔−𝑠𝑘+2𝑧𝑝

𝑠𝑡𝑟
+ 1 (4) 

 

Pooling layer 

One function that summarises a portion of the 

feature maps using pre-defined statistics is the 

pooling operator, which is also called sub-

sampling. Two hyperparameters—the pooling 

stride and the size of the spatial neighbourhood 

(spool)—must be defined initially (strpool). The 

next step is to use strpool points of spacing to 

summarise each area [spool, spool]. This function 

may take two possible values: the maximum 

(MaxPool) and the average (AvgPoll). 

Reducing the number of parameters and 

computation in the network, as well as the spatial 

size of feature maps, is an obvious advantage of the 

pooling layer. Furthermore, the network is better 

able to handle slight input translations and 

distortions because to the pooling operation, which 

summaries activations across a whole 

neighbourhood. One thing to keep in mind is that 
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a convolutional network doesn't always need a 

pooling layer to function correctly. 

1.2 Deep Learning and Transfer Learning 

Deep learning, which is a subfield of ML backed by 

a plethora of algorithms, is also called Deep 

Structured Learning. There is a cascade of 

numerous layers in deep learning that is 

comparable to NNs, as most recent deep learning 

models are built on neural networks[5]. Deep 

learning differs from traditional machine learning 

methods in that it can directly extract valuable 

features from a variety of inputs, including 

pictures, text, and audio, in both supervised and 

unsupervised ways. Feature extraction is really 

seen as an integral aspect of learning when using 

this technique. There is a decreased demand for 

ML solutions that need manual tuning due to these 

deep learning properties. 

Most modern deep learning applications, 

particularly in computer vision, depend on 

transfer learning. One machine learning (ML) 

approach is transfer learning, which involves 

reusing a learned model for a different but similar 

job. Training a CNN from the beginning is a time-

consuming process, and most issues in the medical 

computer vision area, such as skin cancer 

detection, use small data sets (for instance, there 

are only hundreds of images, while CNNs need 

considerably larger datasets). For this reason, it is 

usual to practice to employ a network that has been 

pre-trained on a large dataset (such as ImageNet's 

1.2 million images) as an initialization for the job at 

hand [6]. 

Here are two of the most typical applications of 

transfer learning: 

 

Fixed Feature Extractor: The pre-trained model 

may be used to extract features. It does this by 

repurposing the remaining network nodes as a 

fixed feature extractor for the dataset of interest 

after deleting the output layer or the last fully 

connected node. 

Fine-tuning: To fine-tune anything is to make little 

changes so it performs better. To illustrate, given a 

single dataset, it is possible to arbitrarily divide it 

into a training dataset and a testing (validation) 

dataset according to any ratio desired. After that, 

we can use the training dataset to train the model 

file, and then we can use the testing dataset to train 

the same model. 

Several reasons that take use of pre-trained neural 

network designs drive the adoption of transfer 

learning in skin cancer categorization. Some 

important justifications for using transfer learning 

here are as follows: 

• Limited Data Availability: 

The difficulties in gathering annotated medical 

pictures mean that medical datasets, especially 

skin cancer datasets, are often on the smaller side. 

To improve the model's performance on the 

smaller target dataset, transfer learning enables 

using information from big, diversified datasets in 

other fields (like ImageNet). 

• Feature Extraction and Generalization: 

Many visual identification applications might 

benefit from the extensive hierarchical features 

learnt by pre-trained models, particularly those 

trained on big and varied datasets[7]. To help the 

model generalise to unseen skin cancer pictures, 

transfer learning allows for the retrieval of 

significant information from the early layers of the 

neural network. 

• Reduction in Training Time and 

Resources: 

It may be computationally costly and time-

consuming to train deep neural networks from 

scratch using medical picture datasets. By using 

the information already contained in the weights 

of pre-trained models, researchers may drastically 

cut down on the time and computing resources 

needed for training via transfer learning. 

• Addressing Overfitting: 

When working with a limited target dataset, 

transfer learning may help reduce the likelihood of 

overfitting. Models that draw from a wide variety 

of source domains are better able to generalise to 

novel instances because they are less prone to 

remember the destination dataset's noise. 

• Enhanced Model Convergence: 

In many cases, the training process may be 

expedited by transfer learning. The model can 

swiftly adjust its parameters to the job at hand 

because to the pre-trained weights, which serve as 

a solid foundation for optimization. 

• Improved Performance in Complex Tasks: 

Understanding complicated patterns and subtle 

traits is crucial for skin cancer categorization, 

which is a challenging undertaking in and of itself. 
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Due to their superior performance in picture 

recognition tasks, transfer learning architectures 

like deep convolutional neural networks (e.g., 

VGG, ResNet, Inception) are ideal for the complex 

dermatological image processing. 

• Accessibility of Pre-trained Models: 

Skin cancer classification jobs are made easier with 

the availability of well-established pre-trained 

models like ResNet50, InceptionV3, VGG16, and 

others. This architectural library is easily accessible 

to researchers, who can then tailor it to their needs 

in medical imaging. 

This research compares and evaluates several 

state-of-the-art convolutional neural networks 

(CNNs) that use transfer learning to classify 

melanoma from dermoscopy pictures. The 

performance is evaluated using important 

diagnostic metrics on the massive dataset. The 

results should help guide the development of deep 

learning algorithms for use in the assessment and 

detection of skin cancer. Such AI systems have the 

potential to improve patient outcomes by 

facilitating earlier and more precise identification. 

 

1.3 Outline of the paper 

Following is the structure of the remaining part of 

the paper: Several other researchers in the area of 

skin cancer categorization have investigated the 

core ideas of Deep Learning, which are presented 

in Section 2. Section 3 sheds information on the 

proposed methodology. The findings and their in-

depth analysis for the identification of skin cancer 

using the dataset are described in Section 4. Section 

5 is the last section, and it is where the conclusions 

are drawn as well as the directions that need to be 

addressed to go on. 

 

2. Literature Review 

The use of Deep Learning models for the 

interpretation of medical images has just lately 

become practical. Hence, several models have been 

suggested to address the issue of skin cancer 

detection[8], [9]. Romeo et al.[10] introduced a 

deep convolutional neural network (CNN) and 

many methods for learning with sparse input. 

After training more than 120,000 images using a 

pre-trained GoogleNet CNN architecture, Shoeib 

et al.[11] were able to attain a diagnosis level 

comparable to that of a dermatologist. 

Additionally, Kalouche et al.[12] and Bi et al.[13]  

compared the efficacy of pretrained models to that 

of dermatologists. Both studies found that the 

models were just as good as, if not better than, the 

dermatologists. Additional deep learning-based 

skin cancer detection initiatives include feature 

aggregation across models[14], and ensembles of 

models[15], [16], [17], [18]. 

Models that integrate skin lesion images with 

patient demographics have been suggested by 

Harangi et al.[19], Sun et al.[20]., and Rutkowski 

[21]. Despite the encouraging results, these studies 

all use feature concatenation to merge the two sets 

of data, which can overlook the connection 

between picture metadata and the visual features 

retrieved from the images. A multiplication-based 

fusion method that integrates picture 

characteristics with information using 1D 

convolution was recently suggested by Zaman et 

al.[22]. Results for skin cancer detection were 

promising, according to the investigators, but they 

only covered a small subset of patients. To sum up, 

we need to look at better aggregation approaches 

since there is space for improvement. 

 

3. Material and Method 

3.1 Dataset 

This study's dataset comes from the International 

Skin Imaging Collaboration (ISIC)[23], which has a 

balanced collection of pictures of benign and 

malignant skin moles. Each kind of mole is 

represented by 1800 images, with dimensions of 

224 x 244. Figure 1 displays several example 

images. 
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Fig. 1 Sample images from the dataset 

 

3.2 Methodology 

3.2.2 Data Preprocessing: 

• Set all of the picture dimensions and 

resolutions to the same. 

• Put normalization and augmentation 

methods to work to make datasets more 

unpredictable. 

• Indicate the kinds of skin cancers seen in 

the images. 

3.2.2 Transfer Learning Model Selection: 

• When classifying skin cancers, use one of 

these pre-trained models: ResNet50,  

InceptionV3, VGG16, VGG19, 

MobileNetV2, MobileNet, DenseNet121, 

InceptionResNetV2, or NASNetMobile. 

• The pre-trained weights may be obtained 

from reliable sources such as ImageNet. 

 

ResNet 50 

A deep convolutional neural network architecture, 

ResNet50 stands for Residual Network with 50 

layers[24]. Here is the mathematical expression for 

a generic ResNet residual block: 

The residual block is trained using an input x and 

a residual mapping denoted by F(x). This is how 

the residual block calculates its output, y: 

y=F(x)+x 

The residual block can be further broken down into 

the following steps: 

i. Projection Shortcut: 

If the dimensions of x and F(x) are not the same, a 

linear projection Ws is applied to x to match the 

dimensions. The projection is defined as: 

proj(x)=Ws⋅x 

ii. Convolutional Layers: 

F(x) typically consists of multiple convolutional 

layers, batch normalization, and activation 

functions. The output is obtained by passing x 

through these layers. 

F(x)=ReLU(BN(Conv(x,Wi))+Wb) 

where: 

• Conv is the convolution operation. 

• BN is the batch normalization. 

• Wi are the weights of the convolutional 

layer. 

• Wb are the biases. 

iii. Final Output: 

The final output y is obtained by adding the 

residual mapping F(x) to the input x. 

y=F(x)+proj(x) 

A ResNet50 network, for example, might have 

several convolutional layers organised into 

stacked residual blocks. Using residual 

connections, the architecture as a whole is 

designed to make training extremely deep 

networks easier while reducing the impact of the 

vanishing gradient issue. 

InceptionV3 

A deep convolutional neural network architecture, 

InceptionV3 is renowned for its inception 

modules. These modules use many filters of 

varying sizes in parallel to gather data at different 

scales[24]. Mathematically, a generic Inception 

module in InceptionV3 looks like this: 

Assume that x is the input to the inception module 

and that F(x) is the mapping that has to be learnt. 

The inception module's output y is calculated by 

merging the outcomes of many simultaneous 

operations: 

y=Concat([F1(x),F2(x),F3(x),…,Fn(x)]) 

The input x is processed differently by each of the 

individual branches of the inception module, and 

each Fi(x) represents that operation. 

The operations within each branch typically 

include: 

• 1x1 Convolution: Fi(x)=ReLU(BN(Conv1×1

(x,𝑊1×1
𝑖 ))+𝑊𝑏

𝑖) 

• 3x3 ConvolutionFi(x)=ReLU(BN(Conv3×3

(x, 𝑊3×3
𝑖 ))+𝑊𝑏

𝑖) 

• 5x5 Convolution: Fi(x)=ReLU(BN(Conv5×5

(x, 𝑊5×5
𝑖 ))+𝑊𝑏

𝑖) 

• Pooling Operation: Fi(x)=Pooltype(x) 

After all the branches have been combined, the 

final output y is achieved. For even more efficient 

computing, the inception module may include a 

1x1 convolution prior to the concatenation phase, 

in addition to the parallel operations. This will 

decrease the number of channels. 

 

VGG16 and VGG19 

The simplicity and recurrence of 3x3 convolutional 

layers distinguish the VGG16 and VGG19 

designs[25]. A generic VGG block with two 3x3 

convolutions may be expressed mathematically as 

follows: 

The input to the VGG block may be represented as 
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x, and the mapping to be learnt can be denoted as 

F(x). Here is how the VGG block calculates its 

output y: 

y=ReLU(BN(Conv3×3(x,W1))+Wb1) 

y=ReLU(BN(Conv3×3(y,W2))+Wb2) 

In this formulation: 

• Conv3×3 denotes the 3x3 convolution 

operation. 

• The first convolutional layer's weight is W1 

and the second layer's weight is W2. 

• Wb1 and Wb2 are the biases. 

• The rectified linear unit activation function 

is abbreviated as ReLU. 

This kind of block is stacked in both VGG16 and 

VGG19. In terms of network depth, the only 

variation between VGG16 and VGG19 is the 

quantity of these blocks. By piling these blocks and 

finishing with completely linked layers, the 

VGG16 and VGG19 architectures are constructed. 

While VGG19 and VGG16 have more complex 

architectures that include features like fully linked 

and pooling layers, the above description gets to 

the heart of what a VGG block is all about: the 

convolutional layers. 

 

MobileNet: 

The depth wise separable convolutions used by 

MobileNet are composed of a depthwise 

convolution and a 1x1 pointwise convolution. In 

MobileNet, a depthwise separable convolution 

may be expressed mathematically as follows: 

y=ReLU(BN(DepthwiseConv(x,Wd))+Wbd) 

y=ReLU(BN(PointwiseConv(y,Wp))+Wbp) 

In this formulation: 

• DepthwiseConv represents the depthwise 

convolution operation. 

• PointwiseConv represents the 1x1 

pointwise convolution operation. 

• Wd and Wp are the weights for the 

depthwise and pointwise convolutions, 

respectively. 

• Wbd and Wbp are the biases. 

 

MobileNetV2: 

MobileNetV2 enhances the depthwise separable 

convolution with an inverted residual 

structure[26]. The mathematical formulation for a 

single block in MobileNetV2 is as follows: 

y=LinearBottleneck(x,Ws,Wd,Wp,Wbd,Wbp,Wbs) 

 

 

In this formulation: 

• LinearBottleneck represents the inverted 

residual block. 

• Ws, Wd, Wp, Wbd, Wbp, and Wbs are the 

weights associated with the block. 

• The specific details of the inverted residual 

block involve a combination of depthwise 

separable convolutions, skip connections, 

and linear bottleneck structures to achieve 

a good balance between efficiency and 

performance. 

 

DenseNet121 

A neural network design known as DenseNet 

(Densely Connected Convolutional Networks) 

links all of the layers in a feed-forward manner. 

The version with 121 layers is particularly called 

DenseNet121. The dense block, made up of layers 

that are densely coupled, is the main part of 

DenseNet. Theoretically, DenseNet121's general 

dense block looks like this: 

An example of an input to a dense block is x, and 

the mapping to be learnt inside the dense block is 

denoted as F(x). The dense block's output, y, is 

calculated by adding the outcomes of all the 

preceding layers: 

y=Concat([F1(x),F2(x),…,Fn(x)]) 

Each Fi(x) corresponds to the output of the i-th 

layer within the dense block. 

The operation within each layer typically includes: 

Fi(x)=ReLU(BN(Conv3×3([x,F1(x),F2(x),…,Fi−1

(x)],Wi))+Wbi) 

In this formulation: 

• Wi are the weights of the convolutional 

layer within the i-th layer. 

• Wbi are the biases. 

Throughout the network, the dense block is 

replicated, and information may be easily sent 

from lower to higher levels using skip links. Layers 

of transitions, global average pooling, and several 

dense blocks make up the whole DenseNet121 

design. 

 

NASNetMobile: 

NASNetMobile (Neural Architecture Search 

Network Mobile) is a neural network architecture 

designed through neural architecture search[27]. 
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The mathematical formulation for a generic cell in 

NASNetMobile can be expressed as a combination 

of normal and reduction cells: 

y=Cell(x,W) 

Here: 

• Cell represents a cell in NASNetMobile. 

• x is the input to the cell. 

• W represents the weights associated with 

the cell. 

Multiple procedures are involved in the cell's 

construction, including as convolutional layers, 

pooling, skip connections, and nonlinear activation 

functions. The search procedure for neural 

architecture determines the particular processes 

and the parameters that govern them. 

3.2.3 Model Fine-tuning: 

Substitute a new layer with the same number of 

skin cancer classes for each pre-trained model's 

final completely linked layer. Stop overfitting from 

happening by freezing the first layers of the chosen 

architectures. This will keep the learnt features. 

3.2.4 Training Process: 

• Make three separate sets: one for training, one 

for validation, and one for testing. 

• Use the training set to train your transfer 

learning models, and use the validation set to 

test them. 

• To avoid overfitting and preserve the top-

performing models, use early halting. 

The complete flow of methodology is shown in fig. 

2.  

 
Fig. 2 Flow of proposed methodology 

 

4. Results and Discussion 

4.1 Experimental Setup 

In this study, we implemented the algorithms 

using several open-source frameworks. Python is 

the foundational language for all of these 

frameworks. We use NumPy and Pandas to 

manage generic data. We use OpenCV and Pillow 

for image processing. We ran the scikit-learn 

package for measurements and methods that are 

common in machine learning. Matplotlib and 

Seaborn are used for all visualisations. And lastly, 

Pytorch is used for all the deep learning model 

implementations. 

4.2 Results 

Table 1 training and testing accuracy/loss for 

different deep learning architectures.  

Table 1 training and testing accuracy/loss 

comparison 

Model 
Train 

Loss 

Train 

Acc. 

Test 

Loss 
Test Acc. 

CNN 0.5861 0.6310 0.5769 0.6394 

ResNet50 0.1807 0.9367 0.3968 0.8242 

InceptionV3 0.1321 0.9594 0.4154 0.8364 

VGG16 0.2349 0.9010 0.3271 0.8576 

VGG19 0.2768 0.8760 0.3610 0.8394 

MobileNetV

2 
0.3574 0.8354 0.4281 0.7848 

MobileNet 0.3457 0.8369 0.4122 0.8121 

DenseNet12

1 
0.1945 0.9314 0.3279 0.8545 

InceptionRes

NetV2 
0.0924 0.9735 0.4736 0.8379 

NASNetMob

ile 
0.1702 0.9416 0.3709 0.8333 

 

Fig. 3-4 shows the comparison of training and 

testing accuracy/loss of state-of-art CNN and used 

deep learning architectures (ResNet50, 

InceptionV3, VGG16, VGG19, MobileNetV2, 

MobileNet, DenseNet121, InceptionResNetV2, and 

NASNetMobile). 
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Fig. 3 Training/testing loss comparison 

 
Fig. 4. Training/testing accuracy comparison 

 

Accuracy and loss curves for used deep 

architectures are shown in fig 5-14. 

 
Fig. 5 Accuracy and loss curve for CNN 

 
Fig.  6 Accuracy and loss curve for ResNet50 
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Fig.  7 Accuracy and loss curve for InceptionV3 

 

 
Fig.  8 Accuracy and loss curve for VGG16 

 

 
Fig.  9 Accuracy and loss curve for  VGG19 

 
Fig.  10 Accuracy and loss curve for MobileNetV2 
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Fig.  11 Accuracy and loss curve for MobileNet 

 

 
Fig.  12 Accuracy and loss curve for DenseNet121 

 
Fig.  13 Accuracy and loss curve for 

InceptionResNetV2 

 

 
Fig.  14 Accuracy and loss curve for 

NASNetMobile 
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4.3 Discussion 

Based on the results from fig. 3-4, we can make 

several key observations: 

i. With reduced loss and improved accuracy, 

the deep learning models decisively defeat 

the baseline CNN model on the test and 

train sets. This demonstrates how pre-

trained network transfer learning methods 

are better. 

ii. With the quickest convergence and 

overfitting on the training data, 

InceptionV3 obtains the best train 

accuracy and lowest train loss. On the 

other hand, its advantage is lessened when 

tested. 

iii. With an accuracy rate of 85.76% and a test 

loss of just 0.3271%, VGG16 outperforms 

the competition. This indicates that, in 

comparison to the other models, it has 

superior generalizability. 

iv. Although they perform well on the 

training set, models such as 

InceptionResNetV2 and NASNetMobile 

fail miserably when tested. Their 

decreased test accuracy and relatively 

large test loss demonstrate the degree to 

which overfitting has occurred. 

v. When comparing test results, the majority 

of models, except VGG16, show very slight 

variations. The effectiveness of transfer 

learning in this context is shown by the 

excellent accuracy attained by all deep 

networks. 

vi. The difference between the model's test 

and train scores indicates that there is 

room for improvement in optimizing the 

model's hyperparameters and the use of 

extra regularisation approaches to 

mitigate overfitting. Strengthening 

assessments is another benefit of 

increasing the size of the collection. 

In summary, VGG16 emerges as the most balanced 

model but the competitive performance of all 

CNNs demonstrates promising avenues for 

developing reliable automated skin cancer 

screening systems. 

5. Conclusion 
Numerous individuals are impacted daily by the 

rising incidence of skin cancer. If caught early, this 

cancer may respond well to treatment. The 

likelihood of survival and the rate of death may be 

improved with early detection and treatment. On 

the other hand, inexperienced doctors and 

subjective clinical procedures make malignant 

melanoma diagnoses susceptible to human error. 

Consequently, better methods are required that 

can help both experienced and inexperienced 

doctors. Automated melanoma classification from 

dermoscopy pictures was the subject of this study's 

thorough assessment of transfer learning using 

several state-of-the-art CNN architectures. Several 

models were evaluated using the publicly 

available dataset. These included ResNet50, 

InceptionV3, VGG16, MobileNetV2, and others. 

Fundamental results show that deep learning 

outperforms a baseline CNN, demonstrating the 

efficacy of transfer learning from large-scale pre-

trained networks. The VGG16 model stands out for 

its optimal accuracy-to-time ratio. The competitive 

performance seen in the majority of models 

suggests that there is potential in using these state-

of-the-art CNNs for skin cancer screening 

applications. 

The discrepancy between the two sets of results 

suggests overfitting, which may be mitigated by 

using strategies like dropout and improved 

regularisation. Another way to improve 

generalization is to add more training instances to 

the dataset. It might also be beneficial to 

investigate ensemble methods, which combine the 

predictions of several models, for evaluation 

purposes. Finally, to find classifier designs that are 

specifically made for this job, it is recommended to 

look at model optimization approaches like neural 

architecture search. 
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