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Abstract 
Plant diseases significantly impact crop yields and financial stability, especially in Asia where rice is a staple crop. This 
study introduces the Automated Deep Learning with Wavelet Neural Network (ADLWNN) model to effectively identify 
and classify rice plant diseases. The ADLWNN model integrates the VGG-16 Convolutional Neural Network (CNN) for 
feature extraction from rice plant images. VGG-16, with its deep architecture of thirteen convolutional layers and two fully 
connected layers, is fine-tuned for binary classification by reinitializing the final SoftMax layers. Hyperparameter tuning 
is achieved through the Manta Ray Foraging Optimization (MRFO) algorithm, which mimics the foraging behavior of 
manta rays using techniques like somersault foraging and cyclone foraging to optimize the model parameters.For robust 
recognition, the Wavelet Neural Network (WNN) is employed, which decomposes input signals into simpler wavelet 
components for precise pattern identification. The WNN's wavelet analysis, combined with the optimized features extracted 
by VGG-16, enhances the model's classification capability. Simulation results on a rice plant image dataset show that the 
ADLWNN model achieves a remarkable 98.18% accuracy, outperforming existing methods in sensitivity, specificity, 
precision, and F-score. This comprehensive approach demonstrates the ADLWNN model's effectiveness in automated rice 
disease diagnosis, offering a valuable tool for safeguarding crop yields. 
Keywords —   Convolution neural network, Image classification, Disease diagnosis, Manta Ray optimization, Machine 
learning, Rice plant images

 
Introduction 
THE Significance of Rice as a Staple Food and the Need for Automated Plant Disease Detection Rice is a staple food in 
India and around the globe, with approximately 50% of the global population depending on it.1 Unfortunately, rice plant 
diseases have caused reduction of ten to fifteen percent in rice production, posing a significant challenge to ensuring food 
security for these significant populations. Fungi and bacteria are believed to be the primary culprits behind these diseases 
,2 leading to decreased rice production and substantial economic losses for farmers annually. Early diagnosis of diseases 
in agricultural products is essential in preventing productivity losses and improving quality, 3 making it a crucial factor in 
a country’s economic growth. Traditionally, rice plant disease recognition relied on subjective visual evaluation of 
indications or experimental outcomes by culturing pathogens in labs.4 However, both methods have their limitations, such 
as the subjectivity and error-proneness of visual evaluation and the time-consuming nature of culturing pathogens in labs 
with no guarantee of timely results.  
Furthermore, both methods require expert knowledge for disease identification, which can be difficult for agriculturalists 
to access, especially in remote areas. 5 Researchers have examined a range of approaches for creating automated algorithms 
for rice plant disease detection and classification to solve such problems. Conventional farming tactics have always 
struggled to accurately detect diseases and evaluate their spread across large areas, leading to difficulty in aiding farming 
areas.6 Timely detection of pests and diseases is essential for successful agricultural outcomes. Given this need for 
innovation, several automation techniques have been developed in agronomics to address these challenges.7 Recent 
research has focused on the use of AI (Artificial Intelligence) methods to provide valuable data on soil quality, ideal 



Soran Abdullah Mustafa, Azure Anwar Othman, Aso Azad Aziz Altutinchy  
 
 

Library Progress International| Vol.44 No.3 | Jul-Dec 2024                                                17140 
 
 
 

planting times, and optimal herbicide application to minimize pest infestations. AI has been implemented worldwide to 
enhance the efficiency of crop health monitoring and disease management for almost every crop, leading to increased 
accuracy in crop management .8-9 AI has been shown to outperform humans in this regard, making it a promising avenue 
for improving agricultural productivity. Advanced Deep Learning Techniques for Rapid and Precise Rice Disease 
RecognitionRice disease diagnosis could be a time-consuming and laborious process, but with the advent of advanced DL 
methods, it is now possible to achieve rapid and precise disease recognition. In,10-11 the ADSNN-BO (“Attention-Related 
Depthwise Separable NN with Bayesian Optimization”) was developed to identify and categorize rice illness from rice leaf 
images. This novel method achieves AI-based illness identification by combining an enhanced attention system with a 
MobileNet framework. Bayesian optimization is also used to fine-tune the hyper-parameters of the method, further 
enhancing its effectiveness. Other studies have also explored the use of DL methods for rice disease classification. For 
instance, in,12 existing DL techniques were applied to categorize different disease indicators in photos of rice plants. The 
effectiveness of top GoogleNet CNN as well as pre-trained VGG-16 approaches was evaluated on the held-out data using 
a threefold cross-validation method. In,13-14 A CNN approachconnected to DL is established to prepare the process of 
diagnosis for first recognition. The developed prototype is demonstrated by combining the Keras Inception ResNet V2 
structure with the XGBOOST ensemble learning algorithm to address many tasks, including object segmentation, image 
feature extraction, and input image categorization. The Adam optimizer was used to greatly enhance the developed method 
by improving the efficiency of the training and learning procedures. In , a novel approach utilizing CNN and image 
processing is developed to categorize paddy plants into disease-type class data obtained from sources of agricultural image 
data.  
It seemed a natural choice as CNN is a DL approach associated with rapid convergence and accuracy in classifications 
using small training sets. Finally, in,15 a method for classifying rice illnesses from leaf photos that are connected to 
segmentation and use DNN was modeled. Using a local segmentation technique, disease-affected rice leaf areas were 
identified, and the CNN was trained using those pictures. The method shown in ,16-17 uses three CNN structures that are 
already in existence: DenseNet, VGG, and ResNet. These structures were trained using three datasets, one of which is 
created using photos of rice leaves that were gathered from the BRRI (“Bangladesh Rice Research Institute”). The 
classification was carried out with an ensemble of linear classifiers that applied the RSM (“Random Subspace Method”).  
This research proposes the ADLWNN model, an automated DL model based on wavelet NNs for rice plant classification. 
The efficient identification and classification of photos of rice plants is the main goal of the suggested ADLWNN model. 
CNNs are the main tool used by the suggested ADLWNN model to extract characteristics from the input images of rice 
plants. Furthermore, the MRFO method is employed as a hyperparameter optimizer. Additionally, photos of rice plants are 
reliably recognized and classified using the WNN model. The simulation study of the ADLWNN approach was examined 
with a series of images of rice plants, and findings exhibited that the ADLWNN model performed better than other methods. 
. 
proposed model 
The ADLWNN model is designed to effectively categorize rice plant images by incorporating the MRFO algorithm with 
the VGG-16 model for feature extraction. Additionally, the WNN model is utilized for robust recognition of these images. 
This approach results in improved accuracy and efficiency in recognizing and categorizing rice plants. 
  
Feature Extractor VGG-16: 
 CNN is an algorithm composed of two important building blocks: the pooling and convolutional layers. The convolutional 
layer uses local filters to compute a feature map from input feature maps. This feature map is passed via a linear function, 
typically ReLU, to approximate complex tasks and decrease the need for extensive processing. The pooling layer performs 
downsampling by averaging sub-regions of the feature map. The FCL (“Fully Connected Layers”) utilizes multiple stacked 
convolution and pooling layers to generate a SoftMax layer, which produces scores and predictions for different classes. 
The overall structure of CNN is depicted in Figure 1. 

 
Fig. 1. CNN Structure 

       Understanding the VGG Depth Group: Trainable Variables and Max Pool Layers. The VGG depth group is focused 
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on exploring the impact of deep convolution networks on image classification and recognition. Some of the layers in this 
group include trainable variables, while others, such as the Max pool layer, do not have any trainable parameters. [17]. The 
VGG architecture comprises multiple convolution layers and FCL. It contains fifteen layers with two FCLs and thirteen 
convolution layers. The “non-linear activation function” and hidden layers are represented by 13 blue rectangles, while the 
max-pooling layers are denoted by five red rectangles. Additionally, there are 2 FCLs, indicated by two green rectangles. 
To adapt this architecture for the dataset, the last two layers, i.e. the SoftMax layers, were finetuned. This involved re-
initializing the SoftMax function to suit the binary classification task of differentiating between non-Rumex and Rumex 
plants. Starting with a small channel capacity of 64, the VGG-16 model was trained using a scale factor, which increased 
the capacity at each block. The architecture consisted of five blocks, with the first two blocks having max-pooling and 
paired convolution layers, and the last three blocks having three convolutional layers followed by max-pooling. For the 
final classification, 3 dense layers, or FCLs, were used. The first two FCLs were flattened, with a depth of 512, while the 
last FCL had a depth of 128. The channel size was reduced by half after each max-pooling layer, leading to a more compact 
overall model. 
 
Hyperparameter Tuning based on MRFO  
      The MRFO approach is applied in this study as the VGG16 model is a hyperparameter optimizer. The intriguing actions 
of MR (Manta Rays) can serve as an inspiration for the MRFO technique [18]. Three distinct machine learning processes—
somersault foraging, chain, and cyclone—were taken into account while creating a prospective optimum approach to find 
answers for various optimized challenges. The optimal position of the prey, which includes many planktons, is used in the 
MRFO technique to update the agent’s location at each round. 
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       Where x_best^d (t)  denotes specific plankton density, aimplies “weight coefficient, r signifies an arbitrary number in 
[0,1}x_best^d (t) indicates the position of and, the (i-1)*th representatives at iteration t in the dth dimension, and” a is 
found via  Equation (2): 
                  a=2r  × log	 |𝑟|
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In the case that the plankton is fixed, the animals swim closer to the bait and build lengthy bait chains. The following is a 
quick explanation of the storm process: 
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The storm process is a way of attempting to discover the best possible solution to a given problem by exploring various 
arbitrary points. The process makes use of a reference, referred to as Bait, that is utilized to guide the exploration for 
suitable solutions. A parameter, denoted by r, is a value between 0 & 1 and is used to denote the optimal locations, whereas 
T stands for the maximum iterations. A weight coefficient, denoted by B, is used to capture progress and direct the process 
accordingly. The process involves varying the initial parameters to find the ideal solutions for the given problems. 
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whereas Ld indicates the lower constraint of the dth dimension and Ud denotes the higher constraint of the dth dimension, 
Xrand denotes the arbitrary location solution. Somersault foraging pivoting establishes the feeding location. Agents attempt 
somersaults and pivots to reach alternative locations. As a result, the locations were considered to have achieved the most 
advantageous positions. Consequently, it is denoted by Equation (7): 
 
𝑥#"(𝑡 + 1) = 𝑥#"(𝑡) + 𝑆 × ?𝑟1 × 𝑥$%&!" − 𝑟7 	× 	𝑥$%&!									" − 																																𝑥#"(𝑡)@	                                                (7) 
 
whereas S describes somersault bait and comes to 2 and r, and r2 displays arbitrary numbers. The confusion would be 
reduced by reducing the distance between individual planktons. As the number of repetitions increased, the somersault 
forage ranges decreased. The MRFO methodology has built an “objective function”, implying a positive integration to 
indicate the maximal outcome, to select the optimal variable of the CNN technique. The solution with the least amount of 
error is regarded as optimum in this instance, and the error rate may be deemed as the fitness function. It is explained as 
follows: 
 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑥#) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑥#) = 
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑	𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑇𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑆𝑎𝑚𝑝𝑙𝑒𝑠 × 100		 

                                                                                       (8) 
 
 Integration of MRFO with VGG-16 for Hyperparameter Tuning 
In this study, the Manta Ray Foraging Optimization (MRFO) approach is utilized to optimize the hyperparameters of the 
VGG-16 model. Inspired by the intriguing foraging behaviors of manta rays, MRFO employs three distinct machine 
learning processes—somersault foraging, chain foraging, and cyclone foraging. These processes are designed to explore 
and exploit the search space effectively, helping to identify the optimal hyperparameters for VGG-16, which enhances the 
model's performance in classifying rice plant diseases. 
Somersault Foraging: This process simulates the somersault movements of manta rays, allowing them to explore new areas 
in the search space. The position of each agent (representing a potential solution) is updated based on the best-known 
position in the swarm: 

𝑥#"(𝑡 + 1) = 𝑥#"(𝑡) + 𝑆 × ?𝑟1 × 𝑥$%&!" − 𝑟7 	× 	𝑥$%&!									" − 																																𝑥#"(𝑡)@	. 

Chain Foraging: Agents move closer to each other, forming chains to exploit the search space efficiently.  
Cyclone Foraging: This method models the spiral movements of manta rays, allowing them to explore the search space 
more thoroughly.  
The MRFO algorithm dynamically adapts to the search landscape, improving the likelihood of finding optimal 
hyperparameters. By integrating MRFO with VGG-16, the hyperparameters are fine-tuned effectively, leading to improved 
performance in classifying rice plant diseases. The combination of advanced feature extraction from VGG-16 and the 
intelligent optimization capabilities of MRFO results in a powerful and accurate classification model. 
 

Ѱ8(𝑥) = Q𝑑8Q
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), d≠ 0	𝑗 = 1,2, . . , 𝑘							                    (9) 
     Wavelet analysis is a technique used to understand signals by decomposing them into simple parts that correspond to 
different frequencies or times. Wavelet analysis is commonly used in areas such as signal detection, the study of computer 
graphics, computer vision, control, and dynamical systems. [19] The corresponding wavelet family for offering (x) is 
acquired by 
 

Ѱ8(𝑥) = Q𝑑8Q
-#)	Ѱ(
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), d≠ 0	𝑗 = 1,2, . . , 𝑘							                    (9) 
 
From the equation x={x_1+x_2+....x_n}, and is achieved from psi(x) through scaling them via 
factord_j={d_1j,d_2j,....d_nj} and transform them through 
t_j={t,t_2j,....t_nj} 
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WNN (Wavelet Neural Network) is a method of estimating the relationship between a given input and its corresponding 
output by using wavelets, scaling, and translation. By applying this technique, the input-output mapping can be determined 
for the given data. 
y=∑_(j=1)^k▒〖ω_j Ѱ_j (x)〗=∑_(j=1)^k▒〖〖ω_j ⌊d_j ⌋〗^□(-1/2) Ѱ〗 ((x-t_j)/d_j )                       (10) 
Equation (10), denotes the synaptic weight, x presents the input unit, and signifies the parameter that is considered the 
wavelet. 
 
 Implementation in ADLWNN 
Within the ADLWNN framework, WNN is integral to the classification process. The detailed steps are as follows: 
 Feature Extraction: Initially, the VGG-16 CNN extracts high-level features from rice plant images. These features 
capture essential details that distinguish healthy plants from diseased ones. 
 Wavelet Transformation: The extracted features are then subjected to wavelet transformation. This step involves 
decomposing the feature vectors using wavelet functions ψ\psiψ. The transformation scales and translates the features to 
various levels, emphasizing different aspects of the data. 
 Wavelet Neural Network: The transformed features are input into the WNN. Here, the wavelet functions are 
combined with synaptic weights to model the complex relationship between the input features and the output classes 
(healthy or diseased). 
 Optimization: The synaptic weights and wavelet parameters are optimized during training. The MRFO algorithm 
aids this process by fine-tuning the hyperparameters to minimize the classification error. 
 Classification: The final step involves using the optimized WNN to classify the input images. The network outputs 
the probability of each class, and the image is categorized based on the highest probability. 
 Novelty in ADLWNN 
The novelty of the ADLWNN model lies in its hybrid approach, combining the strengths of VGG-16 for feature extraction 
and WNN for classification, with MRFO for hyperparameter optimization. This integration offers several advantages: 
 Enhanced Feature Extraction: VGG-16's deep architecture effectively captures intricate features from the images, 
providing a solid foundation for classification. 
 Robust Classification: WNN's ability to decompose features into wavelet components allows for precise pattern 
recognition, improving classification accuracy. 
 Effective Optimization: MRFO's intelligent foraging behavior optimizes the model parameters, ensuring the best 
possible performance. 
 Superior Performance: The combination of these techniques results in higher accuracy, sensitivity, specificity, 
precision, and F-score compared to existing methods. 

TABLE I 
COMPARISON OF THE ADLWNN METHOD WITH PRESENT ALGORITHMS 

Method Sensitivi
ty 

Specifici
ty 

Pre Acc F-
Score 

ADLWNN 99.97 99.78 98.15 98.18 99.13 
DesenNet-
MLP 

96.93 98.65 96.32 97.47 96.82 

DNN JOA 83.07 93.66 81.30 93.59 89.33 
DNN 73.75 88.75 74.88 89.31 80.76 
DAE 68.71 87.58 66.80 86.23 77.05 
ANN 63.42 81.93 61.11 79.97 67.57 
CNN 94.55 93.52 94.34 94.06 93.27 
KNN 65.68 77.90 72.62 70.37 65.74 

 
Result & Discussion 
       A collection of 1550 images of rice plants is used to investigate the ADLWNN model’s simulated analysis. Table 1 
presents a thorough comparative analysis that aims to illustrate the improved outcomes of the ADLWNN model. Fig. 2 
shows the results of a sensitivity evaluation of the ADLWNN model compared to other recent models. The KNN, ANN, 
and DAE models had Sensitivity values of 68.71%, 63.42 %, and 65.68%, respectively, which were significantly lower 
than the other models. The DNN and DNN-JOA models had sensitivity values of 83.07% and 73.75%, respectively, 
providing reasonable results. The CNN and DenseNet-MLP models reported closer Sensitivity values of 96.93% and 
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94.55%. Finally, the ADLWNN model had the highest Sensitivity of 99.97%. 
 

  
Fig. 2. ADLWNN Method Analysis with Other Recent Algorithms 
 
    The results demonstrate that the ADLWNN approach provides the highest Specificity value of 99.78%, followed by 
DensNet MLPD and CNN with 98.64% and 93.51%, respectively. DNN-JOA and DNN have achieved better results 
compared to DAE, ANN, and KNN, with Specificity values of 93.66% and 88.75%, respectively. However, minimal 
Specificity scores were provided by KNN (77.90%), ANN (81.93%), and DAE (87.58%) models. 
 

   
Fig.3.Comparison Analysis of ADLWNN method with Present Algorithms 
 
The performance of the ADLWNN model has been assessed with recent methods, as revealed in Figure 4. The KNN, ANN, 
and DAE models have reported minimal Precision values of 66.80%, 61.11%, and 72.62%, respectively. The DNN as well 
as DNN-JOA approaches have provided better Precision values of 81.30% and 74.88%. The CNN and DenseNet-MLP 
models have had Precision values of 96.32% and 94.34%, respectively. However, the highest Precision values have been 
reported by the ADLWNN model, with a value of 98.15%. 
 

  
Fig. 4. Comparison Analysis of ADLWNN method with Present Algorithms 
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Fig. 5. Comparison Analysis of ADLWNN method with Present Algorithms 

 
Fig. 6. Comparison Analysis of ADLWNN method with Present Algorithms 

Fig. 5 and Fig. 6 show the accuracy and F-Score of the ADLWNN method compared to recent models. Results indicate 
that the KNN, ANN, and DAE models have low accuracy and F-Score values of 86.23%, 79.97%, 70.37%, 77.05%, 
67.57%, and 65.74%, respectively. The DNN as well as DNN-JOA models have relatively better performance with 
accuracy and F-score values of 93.59%, 89.31%, 89.33%, and 80.76%, respectively. Furthermore, the CNN and Dense 
Net-MLP approaches have the highest accuracy and F-score values of 97.47% and 94.06%, 96.82% and 93.27%, 
respectively.  
 
  

 
Fig. 7. ADLWNN approach VACC and TACC Analysis 

 
Finally, the ADLWNN model achieved the best performance with an accuracy and F-score of 98.18% and 99.13%, 
respectively. The performance of the ADLWNN technique on rice plant classification has been investigated in terms of 
VACC, TACC, VLS, and TLS. As seen in Fig.7, the DLWNN model has enhanced performance in terms of VACC and 
TACC with increased values. The maximum TACC outcome has been reached by the ADLWNN method. On the other 
hand, Fig. 8 suggests that the ADLWNN model has emerged as a better performing method in terms of TLS and VLS with 
minimal values. Notably, the VLS outcome has seen a significant reduction due to the ADLWNN approach. 
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Fig. 8. VLS and TLS approach of ADLWNN 

The findings of the experiment showed that the ADLWNN model showed superior performance compared to the other 
models. 
The ADLWNN model demonstrates exceptional performance in identifying and classifying rice plant diseases, achieving 
a remarkable 98.18% accuracy. The integration of VGG-16 CNN for feature extraction and Wavelet Neural Network 
(WNN) for robust recognition proves to be a powerful combination. The Manta Ray Foraging Optimization (MRFO) 
algorithm's hyperparameter tuning further enhances the model's performance. Compared to existing methods, ADLWNN 
shows superior sensitivity, specificity, precision, and F-score, making it a valuable tool for automated rice disease 
diagnosis. 
The ADLWNN model's effectiveness can be attributed to its ability to extract complex features from rice plant images and 
decompose them into simpler wavelet components for precise pattern identification. This comprehensive approach enables 
the model to detect subtle differences in disease symptoms, leading to accurate classification. The ADLWNN model's 
potential to increase crop yield by facilitating early disease detection and treatment makes it a significant contribution to 
the field of agricultural technology. Future research can focus on expanding the model's capabilities to detect multiple 
diseases and integrating it with real-time monitoring systems for practical applications. 
Conclusion 
      This article outlines an ADLWNN model that can effectively recognize and classify images of rice plants. This model 
uses the WNN model to provide trustworthy recognition and classification, and the MRFO in conjunction with the VV16 
model to extract features from the input photos. A collection of images of rice plants was utilized to assess the ADLWNN 
model’s competency. The analysis of the data revealed that the ADLWNN model performed better than most traditional 
methods. Thus, this model can not only detect rice plant diseases but also help increase crop yield. 
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